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[1] In this paper, we describe the algorithm that will be used during the upcoming Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission for
discriminating between clouds and aerosols detected in two-wavelength backscatter lidar
profiles. We first analyze single-test and multiple-test classification approaches based
on one-dimensional (1-D) and multidimensional probability distribution functions (PDFs)
in the context of a two-class feature identification scheme. From these studies we derive an
operational algorithm. This algorithm is a 3-D approach utilizing the layer mean
attenuated backscatter at 532 nm, the layer-integrated 1064-nm to 532-nm volume color
ratio, and the midlayer altitude. A data set acquired by the Cloud Physics Lidar (CPL) is
used to test the algorithm. Comparisons are conducted between the 3-D CALIPSO
algorithm results and those derived from an existing 2-D algorithm. The results obtained
show generally good agreement between the two methods. However, of a total of 228,264
layers analyzed, ~5.7% are classified as different types by the two algorithms. This
disparity is shown to be due largely to the misclassification of optically thin clouds as
aerosols by the 2-D algorithm. The use of 3-D PDFs in the CALIPSO algorithm is found
to significantly reduce this type of error because the separation between cloud and aerosol
clusters is more complete in this 3-D space. Dust presents a special case. Because the
intrinsic scattering properties of dust layers can be very similar to those of clouds,
additional algorithm testing was performed using an optically dense layer of Saharan dust
measured during the Lidar In-space Technology Experiment (LITE). In general, the
method is shown to distinguish reliably between dust layers and clouds. The relatively few
erroneous classifications that occurred most often in the analysis of the LITE data occurred
in those regions of the Saharan dust layer where the optical thickness was the
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1. Introduction

[2] The excellent spatial resolution provided by backscat-
ter lidar makes it a powerful remote sensing tool for
measuring the vertical distribution of clouds and aerosols
in Earth’s atmosphere. When flown in space, backscatter
lidars can provide measurements of clouds and aerosols on a
global scale. This unique ability has been demonstrated by
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NASA’s Lidar In-space Technology Experiment (LITE)
[Winker et al., 1996]. However, the quantitative retrieval
of cloud and aerosol optical properties, including backscat-
ter and extinction profiles and layer optical depths, requires
knowledge of the extinction-to-backscatter ratio (or the
“lidar ratio”). Given a sufficiently accurate measurement
of the layer two-way transmittance [e.g., Young, 1995; Liu
et al., 2000], or (alternately) simultaneous two-wavelength,
high signal-to-noise ratio (SNR) measurements for which
the backscatter profiles satisfy some additional similarity
requirements [e.g., Sasano and Browell, 1989; Liu et al.,
2000; Vaughan, 2003], the lidar ratio can be retrieved from
the lidar observation alone. However, for space-based lidar
measurements these conditions are only occasionally satis-
fied, and therefore the specific values of lidar ratio that are
applied in the data processing must be selected according to
an informed estimate of the layer type and/or composition.
In this latter case, accurate selection of lidar ratio relies on a
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layer classification scheme that determines layer type on the
basis of inferential tests applied to the directly measurable
optical and physical properties of the layer. These properties
include attenuated backscatter coefficients, attenuated total
color ratios, volume depolarization ratios, layer top, base,
and/or center height, geophysical location, season, etc.

[3] The work reported in this paper develops a fully
automated scene classification algorithm for discriminating
between clouds and aerosols in lidar data to be acquired by
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO). The CALIPSO mission is being
developed jointly by NASA and the French space agency,
Centre National d’Etudes Spatiales [ Winker et al., 2003]. Its
payload consists of a polarization-sensitive two-wavelength
lidar, an imaging infrared radiometer, and a wide field
camera. Together, this suite of instruments will provide a
unique set of measurements to improve our understanding
of the role of clouds and aerosols in the Earth’s climate
system. After launch in early 2005 the CALIPSO satellite
will conduct on-orbit observations continuously for 3 years.
The tremendous data volume acquired during this time
necessitates the use of a fully automated data analysis
system. To this end, a collection of intelligent algorithms
for automated CALIPSO lidar data processing is being
developed [Liu et al., 2002b; Hu et al., 2001; Omar et al.,
2002; Vaughan et al., 2002; Reagan et al., 2002]. Of
fundamental importance in this processing is the accurate
discrimination between clouds and aerosols in the backscat-
ter data. Cloud-aerosol discrimination is important not only
in the selection of appropriate lidar ratios for extinction
retrievals but also, more fundamentally, so that aerosol
retrievals are not contaminated by clouds. Cloud contami-
nation is one of the primary uncertainties in current acrosol
climatologies derived from passive satellite observations.
The range-resolved data acquired by satellite lidar signifi-
cantly improve our ability to discriminate cloud from
aerosol, and should therefore greatly enhance our ability
to make reliable aerosol measurements in broken-cloud
environments.

[4] In this paper, we investigate classification techniques
for distinguishing between two separate classes on the basis
of probability distribution functions (PDFs) and propose a
specific variant for use during the CALIPSO mission. We
first introduce different classification approaches based on a
single test or on multiple tests that use a confidence function
(f~function) constructed from one-dimensional and multidi-
mensional (1-D or multiple-D) probability distribution
functions to distinguish between two classes. We then
develop an operational algorithm for cloud-aerosol discrim-
ination that takes full advantage of the measurements made
by the polarization-sensitive, two-wavelength lidar flown
aboard the CALIPSO satellite. Extensive tests of algorithm
performance were conducted using approximately 49 hours
of down-looking lidar data obtained by the Cloud Physics
Lidar (CPL) [McGill et al., 2002] during the 2003 Observ-
ing System Research and Predictability Experiment—Pacific
THORPEX Observing System Test (THORPEX-PTOST)
campaign (M. A. Shapiro and A. J. Thorpe, Program
overview, 2002, available at http://www-angler.larc.nasa.
gov/thorpex/index.html). Additional algorithm tests focused
on the correct identification of dust layers as aerosols. These
tests used measurements of an optically and geometrically
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thick layer of Saharan dust acquired during orbit 83 of the
LITE mission [Winker et al., 1996]. Test results for both
cases are presented, and for the THORPEX data the
CALIPSO classifications are compared to those obtained
by a 2-D algorithm originally developed for the Geoscience
Laser Altimeter System (GLAS) data processing.

2. Classification Approaches
2.1. Algorithm Overview

[s] Wang and Sassen [2001] have recently developed a
rule-based algorithm for cloud type classification of ground-
based observations from multiple remote sensors. For
successful cloud typing, clouds must first be distinguished
from aerosol layers. In this procedure the discrimination
between clouds and aerosols is achieved by comparing the
observed ratio of peak-to-base signals, 7, in a layer with
some preselected value. The feature is classified as an
aerosol when T is smaller than this value, and as a cloud
otherwise. In effect, the Wang and Sassen approach to
cloud-aerosol discrimination can be seen as a thresholding
technique, with the preselected T 'ratio serving as a threshold
value separating clouds and aerosols. The specification of
the threshold value becomes more critical at higher altitudes
(>5 km), because of the increased occurrence of subvisual
and thin cirrus having 7T values close to those characteristic
of aerosols. In addition, optimal performance of the Wang
and Sassen algorithm requires high-SNR samples acquired
by averaging over a time window of 1 hour (i.e., sixty
1-min-averaged profiles). This last requirement raises some
practical concerns about the application of their technique to
space-based lidar measurements. Mass and power con-
straints for orbiting systems typically dictate a very low
per-pulse SNR. This limitation is exacerbated by the very
rapid movement of the sensor across the Earth’s surface,
which restricts the observation time for any single feature
and consequently precludes the use of extensive temporal
averaging to improve the SNR.

[6] A second variant of the threshold algorithm has been
developed for use by GLAS [Palm et al., 2002], and a
prototype of this algorithm has been implemented for
testing in the CPL analysis software. The GLAS prototype
algorithm is applied to the attenuated volume backscatter
coefficients 3'(r) [Platt et al., 1998], i.e., to the calibrated,
range-corrected lidar signals within each layer. The discrim-
inator applied when using this technique is the product, P, of
the layer’s maximum attenuated backscatter, 3., and
maximum vertical gradient magnitude within the layer,
|AB'/Az| nax. Computed P values are then compared to a
predetermined, altitude-dependent array of threshold values.
Layers with values of P in excess of the threshold are
interpreted as cloud; those with P values uniformly less than
the threshold are classified as aerosols. As with the Wang
and Sassen [2001] algorithm, the selection of threshold
values is crucial. The GLAS threshold values for each
altitude bin are set at the point where the probability of
correct cloud designation is the highest when balanced
against the probability of false aerosol designation. The
probabilities used are derived from statistical studies of
existing ground-based and airborne databases. The GLAS
algorithm is therefore equivalent to a 2-D (in p-z space)
algorithm. Difficulties in applying this approach to space
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lidar may arise from the gradient computation of |AB'/
Az|max- Because the gradient calculation is highly sensitive
to noise, and because the SNR for space-based lidars is
generally poor when compared to ground-based or airborne
system, P values computed from space lidar data are likely
to be highly uncertain.

[7] Unlike the techniques described previously, the
cloud-aerosol discrimination technique devised for the
CALIPSO lidar measurements is a PDF-based approach.
Classifications derived using these techniques are based on
statistical differences exhibited by the various optical and
physical properties of clouds and aerosols [Liu et al.,
2002b]. A confidence function constructed from 1-D or
multiple-D PDFs of feature attributes is introduced to serve
as the discriminator between two classes. Along with the
classification decision, PDF-based approaches can also
assign a confidence level to each decision. In addition,
because the inference engine performing the classifications
is designed to be independent of the PDF database, new
knowledge obtained via lidar observation or from other data
sources can be used to update the PDF database without
requiring modifications of the engine. In the following
sections we introduce the general concepts inherent in the
PDF-based classification approaches and describe some
specific implementations.

2.2. Single-Test Classification

[8] The confidence function on which the PDF-based
approaches rely is given by [Liu et al., 2002b]

X)  Py(X) - PI(X)Ni/N,
X) Pz(X)+P1(X)N1/N2

XK, M)

In this expression, X is the value of a given test attribute
used to classify the feature. For the CALIPSO cloud-aerosol
discrimination task, X can be the attenuated backscatter,
attenuated volume color ratio, depolarization ratio, etc. The
ni{X) and N; are the number of occurrences of class i having
attribute X and the total number of events for the jth class,
respectively. P(X) is the PDF of X. K = N,/N; is therefore a
scale factor that quantifies the relative occurrence frequency
of the two classes. Subscripts 1 and 2 refer to classes 1 and 2,
i.e., to acrosol and cloud, respectively, when the technique is
applied to the cloud-aerosol discrimination problem. Alter-
nately, subscripts 1 and 2 could refer to water and ice should
the technique be applied to the cloud phase discrimination
problem. We note that n,/(n; + n,) and ny/(n, + n,) are the
occurrence probabilities of classes 1 and 2, respectively, and
therefore f is the differential occurrence probability. As
shown conceptually in Figure 1, the value returned by the
confidence function is bounded on [—1, 1].

[¢] On the basis of the return value of the f~function we
derive both a classification and a measure of the confidence
we ascribe to that classification. The sign of the f~function
determines the class assignment; as in Figure 1b, negative
values indicate class 1, and positive values indicate class 2.
The magnitude of f'(between 0 and 1) assigns a confidence
to the classification. A value of zero indicates that no
classification can be made. All lower confidence classifica-
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Figure 1. Conceptual (a) PDFs and (b) confidence
functions, showing that the effect of noise is to widen the
PDFs and thereby increase the PDF overlap and region of
ambiguity where the magnitude of confidence function is
smaller than 1.

tions arise from the overlap region of the two PDFs, shown
between A and A’ in Figure la.

[10] Noise and systematic errors in observation data can
further reduce the confidence of decision. As shown in the
following discussion, noise can broaden the measured PDFs
of a test attribute. The noise-affected confidence function
Jf2(X) can be introduced using the noise-affected PDFs P,
(=1 or 2 represents classes 1 or 2):

_ P2,n(X) - PLn(X)Kv

Ju(X) = Pyy(X) + Pia(X)K'

)

Pin(X) = /0 . P (X ) puoise (X, X ) dX. (3)

Here phoise(X, X ) is the distribution of variations in test X
centered at X induced by the noise, i.e., the probability that a
true value of X will be represented as a value of X due solely to
noise contamination. To show the noise effect, the noise-
affected PDFs computed using equation (3) are also presented
in Figure 1a (dashed curves). Gaussian-distributed noise has
been assumed with a width 0.4 times that of the noise-free
PDFs. The noise-affected PDFs are broadened significantly,
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Figure 2. Conceptual two-dimensional PDFs.

and the PDF overlap region is increased. As a result, the low-
confidence region in f (the region bounded by B and B’ in
Figure 1a) is similarly increased.

2.3. Multiple-Test Classification

[11] Asdescribed in section 2.2, there exists an ambiguous,
low-confidence region in the f~function where the class 1 and
class 2 PDF curves overlap (Figure 1). If the measured value
of an observed feature falls within this region, the feature
cannot be identified authoritatively; that is, there is a possi-
bility that an erroneous classification is made. However,
given a feature described by multiple attributes, should the
value of a single test fall within the low-confidence region, it
may still be that tests applied to some other attribute will
generate a result in the high-confidence region, hence yield-
ing a highly confident classification. The ambiguous classi-
fication problem can therefore be improved by conducting
multiple tests. We illustrate the situation further by consid-
ering the two-test example conceptually illustrated in
Figure 2. The boundaries of the class 1 and class 2 clusters
are shown by solid curves. We note that in the 2-D example,
the 1-D cluster distribution for one test is an integral of the
2-D distribution over another test. The ambiguous region is
therefore the area bounded by the line X} and X/ for test X;
and by the line X5 and X} for test X5; i.e., the region consisting
of'the areas Ay, By, I, B,, and D, for X, and A,, B>, I, B, and
D, for X;. The class membership for features in areas D; or
A, cannot be decided unambiguously by test X; only. They
can, however, be identified by test X; since these features are
not in the ambiguous region of X>. It is obvious that features
in the areas C; and C, can be classified unambiguously by
either X; or X,, because these features are not in the
ambiguous regions of X; or X,. Note that features in the
areas By, I, and B, cannot be classified unambiguously by
either test.

[12] A straightforward formulation of a multitest approach
is

S = fmax,
[ fax| = max{[ £ (X1.0) |, [/ (Xon) |-

| (4)
S Xon) [
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and m is the number of available tests. This approach
searches first the test that has the maximal value of the
f~function. The classification can then be made on the basis
of this max-value test in the same way as the single-test
approach described above: The sign of the test determines
the feature classification, and the magnitude of the test
assigns a confidence value to the classification.

[13] However, using the max-value approach, we still
cannot derive an unambiguous classification for the areas
By, I, and B, shown in the example given in Figure 2.
Therefore, to further improve our classification efficiency,
we introduce a multidimensional confidence function,

ﬁl(leX27 e 7Xm)
_ PZ,H(X17X2> e 7Xm) - Pl,n(Xl>X27 e 7Xm)K§'
P2,)1(X1 7X27 e 7Xm) + Pl,n(XI 7X27 e 1Xm)Ks' '

(5)

P; (X1, X5, -+, X,,) is the noise-affected PDF for the ith
class and can be derived by

Pin(X1, X, Xp) =//--~/P,-()h,)?z,--~,)?m)
Pnoise (le/i}l )pnoisc ()(275(2) ** " Pnoise (/me/{/m) d)?l d)N(2 e df(m»
(6)

where P(X;, X5,---, X,,) is the noise-free multidimen-
sional PDF as a function of test attributes (X, X5, -,
X,). The features in arecas B; and B, that are not
definitely recognizable by the max-value approach
become clearly distinguishable by the multiple-D
approach.

[14] In the example given in Figure 2, area I remains an
ambiguous region; even the 2-D confidence function ap-
proach will not produce an unambiguous classification for
features falling in this region. However, by increasing the
number of tests (and simultaneously increasing the dimen-
sion of the confidence function) it may be possible to further
reduce the ambiguous region. From a statistical point of
view the separation of different class clusters in higher-
dimensional space is generally more complete than in lower
dimensional space. Increasing the number of dimensions
should decrease the region of complete overlap between the
two PDFs, thereby reducing the fraction of ambiguous
classifications that are retrieved. This can be seen clearly
in the example in Figure 2, where the 2-D cluster distribu-
tions have smaller overlap than the 1-D distributions of any
test.

3. A Cloud and Aerosol Discrimination
Algorithm
3.1. Detail of Algorithm

[15] The lidar cloud-aerosol discrimination is performed
on the basis of statistical differences between the spatial
and optical properties of clouds and aerosols. Figure 3
presents an example of the particulate backscatter coef-
ficients at 532 nm, (3535, and the backscatter color ratio,
X = Prosa/Bs32, for different types of clouds and aerosols
that are defined by the Optical Properties of Aerosols and
Clouds (OPAC) software package [Hess et al., 1998a,
1998b]. In general, as seen in the plot, clouds have larger
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Figure 3. The 1064-nm to 532-nm color ratio versus
backscatter coefficient at 532 nm computed with the OPAC
software for different types of aerosols and clouds.

backscatter coefficients and higher color ratios around 1.
Aerosols have smaller backscatter coefficients and lower
color ratios. As borne out by field observations [e.g.,
Sugimoto et al., 2002], the exceptions to this general rule
are desert aerosols and maritime aerosols under high-
relative-humidity conditions, both of which exhibit rela-
tively large color ratios. The separation of the cloud and
aerosol clusters in the OPAC results clearly indicates the
feasibility of using backscatter coefficients and backscatter
color ratios to distinguish aerosols from clouds. CALIPSO
is designed to make all of the necessary measurements.
The CALIPSO lidar is a polarization-sensitive, dual-wave-
length system that provides range-resolved measurements
of 532-nm and 1064-nm attenuated volume backscatter
coefficients. The spectral dependence of the signals from
unclassified features can be investigated using the attenu-
ated volume color ratios, which are obtained by dividing
the attenuated volume backscatter coefficients at 1064 nm
by the identical quantities measured at 532 nm. In addi-
tion, because the 532-nm channel is equipped with polar-
ization-sensitive optics, volume depolarization ratios can
be derived by taking the ratios of the perpendicular and
parallel components of the 532-nm backscatter signal.
These optical properties are augmented by layer top and
base heights determined by analysis of the profiles of
attenuated backscatter coefficients [Vaughan et al., 2002].
This precise spatial information provides an additional
constraint that can be used in the scene classification task.

[16] The operational algorithm developed for CALIPSO
uses a 3-D approach. Test attributes are the layer-averaged
attenuated backscatter 3’ at 532 nm, the layer-integrated
attenuated volume color ratio %', and the layer center
altitude z. The layer-integrated volume color ratio is the
ratio formed by dividing the layer-integrated attenuated
backscatter at 1064 nm by the layer-integrated attenuated
backscatter at 532 nm. The limits of the integration are from
layer top to layer base. The layer center altitude is the
average of the detected layer top and base altitudes. Includ-
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ing height information with the layer optical properties
should increase the effectiveness of any cloud-aerosol
separation scheme. This is because the optically thinner
clouds that contribute most to the overlap of PDF with
aerosols generally appear in higher altitudes, whereas aero-
sols concentrate mostly in the planetary boundary layer
(PBL).

[17] On the basis of modeling studies using OPAC and
various analyses of the LITE measurements, it is expected
that cloud and aerosol clusters are well resolved in 3, ¥/,
and z space. Figure 4 presents a flowchart of the algorithm.
The algorithm first loads noise-free PDF files from an
existing PDF database that has been compiled on the basis
of previous measurements. For each feature, layer products
8, X/, and z are read in as input along with estimated
uncertainties A3’ and Ay’. Noise-broadened PDFs are then
computed using equation (6). The generation of the neces-
sary noise distributions is described in detail in section 3.2.

3.2. Approximation of the Noise Distribution

[18] To compute the noise-broadened PDFs that allow us
to include the effects of measurement noise on the confi-
dence function values obtained using equation (6), distri-
butions of the variations in the test attributes 3’ and % due
to noise must first be derived or estimated. The CALIPSO
532-nm and 1064-nm receiver channels use photomultiplier
tubes (PMTs) and an avalanche photodiode (APD), respec-
tively, all operated in analog detection mode. PMT signal
amplification is a multiply stochastic Neyman type-A pro-
cess [Liu and Sugimoto, 2002]. The multiplication distribu-
tion for a uniform gain APD can be analytically described
[McIntyre, 1972]. However, a Gaussian distribution is a
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Figure 4. Flowchart of an operational algorithm for the
CALIPSO lidar cloud and aerosol classification.
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Figure 5. (a) Attenuated backscatter at 532 nm. Feature layer mask classified by (b) the GLAS

algorithm and (c) the CALIPSO algorithm.

good approximation for the multiplication process for both
PMTs and APDs when the average number of received
photoelectrons is larger than ~100. For photon-counting
mode the output counts of PMT or APD are distributed in
the same way as the input photons. Again, the approxima-
tion of Gaussian distribution can be made for larger photo-
electron numbers. Our algorithm therefore assumes
Gaussian distributions for the noise-induced variations in
3’ at both 532 nm and 1064 nm. If we designate B and X as
the measured values of some underlying true values 3" and
X/, then the probability that the true value of 3’ is actually
measured as B is given by

_ 1 B_3)’
Pnoise (B,B/) = \/E”K o exXp |: ( 2626) :| ) (7)
‘/ 3/

where o7 is the estimated uncertainty in 3" due to noise.

[19] The noise distribution for %' can then be derived
from the Gaussian noise distributions of 3’ at 532-nm and
1064-nm wavelengths:

o0
Pnoise (Xla X) :/ Phoise (6/5327 BS32)pnoise (X,B,5327 B1064) Bgm dB,532
0

00 / _ 2
! / exp [ (6532 5532)
0

e — 5
ZT‘GBSXZOBIUM 20—8532

2 532 dB/SSZ . (8)

Bioss

_ (X532 — 51064)2} 2

Here og,,, and op,,, are the uncertainties estimated for Bs;,
and B¢g4, respectively, and X = Byg4/Bss,. The algorithm

also assumes that the noise distribution of ' is the same as
that at X over the entire integral region.

4. Algorithm Tests and Discussions
4.1. Using CPL THORPEX-PTOST Data

[20] The Cloud Physics Lidar is a three-wavelength
polarization-sensitive airborne lidar system [McGill et al.,
2002] that detects the perpendicular and parallel components
of the backscatter profile at 1064 nm and total backscatter
profiles at 532 nm and 355 nm. Included among the
comprehensive suite of CPL postflight data products are
feature boundaries, layer type (i.e., cloud or aerosol), and
range-resolved extinction and backscatter coefficients. The
feature types were classified by the GLAS prototype layer
discrimination algorithm. The CPL data sets are thus an ideal
data source for CALIPSO algorithm tests, as direct, straight-
forward comparisons can be made between the CALIPSO
test results and the CPL data products. A data set acquired
during the 2003 THORPEX-PTOST campaign conducted in
Honolulu, Hawaii, from 18 February to 14 March 2003 was
used to test the performance of the cloud-aerosol discrimi-
nation algorithm. During THORPEX-PTOST the CPL
acquired backscatter data on nine scheduled ER-2 flights.
The CALIPSO algorithm test set consists of all of the data
acquired during these flights. In addition, all data acquired
on the ER-2 transit flight from California to Hawaii are also
used. In total, the test set consists of approximately 49 hours
of CPL measurements.

[21] Figure Sa presents an example of 532-nm attenuated
backscatter signals acquired by CPL. The data shown were
acquired between 1945:32 and 2015:26 UTC on 19 Febru-
ary 2003. Four high-cloud layers above 5 km are observed.
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PBL aerosols as well as some low broken clouds are also
seen. An optically thin aerosol layer exists above the PBL
and below 5 km. Layer boundaries have been determined by
a threshold-based feature finder [Palm et al., 2002] incor-
porated into the CPL data analysis software. Feature loca-
tions, together with the classifications assigned by the
GLAS algorithm, are shown in Figure 5b. Colors indicate
feature type: Red is aerosol, and blue is cloud. Most layers
have been successfully detected, excepting only those
optically very thin layers or layers obscured by overlying,
optically dense cloud layers. Application of the CPL layer
finder to the entire 10-flight data set yields a total of
228,264 features, all of which are used as input to test the
CALIPSO cloud-aerosol discrimination algorithm.

[22] For each layer the mean attenuated 532-nm back-
scatter (353, is derived by averaging the calibrated and
range-corrected 532-nm signals over the detected layer
upper and lower boundaries. The 1064-nm to 532-nm
volume color ratio X’ is obtained from the ratio of the
averaged attenuated 1064-nm and 532-nm backscatters,
Blo64 and B53,. Uncertainty is calculated for each param-
eter on the basis of error propagation theory [Bevington
and Robinson, 1992]. Random errors due to noise are
dominant when features are optically thin. Only random
error is taken into account. Measured layer altitudes are
assumed to be accurate.

[23] A PDF database was developed using lidar observa-
tions and model data. Consistent with the measurements of
Beyerle et al. [2001], the mean attenuated volume color
ratio for clouds is characterized using a normal distribution.
On the basis of the authors’ analyses of the LITE data, a
normal distribution has also been selected for use with
aerosol color ratios. The initial means and standard devia-
tions for the color ratio PDFs were derived from model
studies using OPAC. That normal distributions represent
appropriate approximations for both cloud and aerosol color
ratio distributions can be further verified by inspection of the
CPL THORPEX observations (e.g., as shown in Figure 6). A
lognormal distribution has been employed to represent the
mean attenuated backscatter coefficient for aerosols. Both
the LITE data analyses and the lidar measurements acquired
at numerous European Aerosol Research Lidar Network
(EARLINET) stations show that aerosol backscatter can be
well characterized by a lognormal distribution [Matthias and
Bdsenberg, 2002; Bosenberg et al., 2003]. The aerosol
backscatter distribution parameters used in this work were
derived from the LITE aerosol measurements. For cloud
backscatter coefficients we employ a multimodal distribu-
tion retrieved from the LITE cloud data. As illustrated in
Figure 6, the CPL cloud observations also show a multi-
modal distribution. In order to automatically accommodate
the huge amount of new data that will be collected during the
lifetime of CALIPSO, the distribution parameters for both
clouds and aerosol can be adjusted iteratively during the
classification process. This iterative improvement procedure
was employed during the tests with the THORPEX-PTOST
data set.

[24] The results produced from the CALIPSO algorithm
are quite consistent with the GLAS results: Only 5.7% of a
total of 228,264 features have been classified as different
types by the GLAS and CALIPSO algorithms. Our case
studies showed, however, that the preliminary version of the

LIU ET AL.: LIDAR CLOUD AND AEROSOL DISCRIMINATION

D15202
6x10°
3 5x103
|9)
c
g
5 4x103
|9)
(9]
1<)
% 3x10°
9]
o]
€ 2x103
>
zZ
X10°E 7
0 0.5 1 15
Mean volume color ratio
1.5x10*———rrrrmr——r e
L (b
14 (b) ——— GLAS aerosol
g —— GLAS cloud
g Y B CALIPSO aerosol 1
3 1x10%F ---0--- CALIPSO cloud .
S z
Y— 4
o 4
] 1
2 o |
S 5x10 r ]
z r
ok

- A { -}
107 10" 10° 10

10°
Mean attenuated backscatter [km'1sr'1]

Figure 6. Distributions of (a) volume color ratio and
(b) mean attenuated backscatter for all altitudes.

GLAS classification algorithm produced more misclassifi-
cations of cloud as illustrated by the example in Figure 5.
In this example, ~37.9% of the cloud layer between 5 and
6.5 km from 1945 to 1954 UTC has been incorrectly
classified as aerosol by the GLAS algorithm. We note that
in the misclassified regions the mean attenuated backscatter
has been decreased by the attenuation of the laser beam in
the upper cloud layer. On the other hand, however, only
0.21% of this cloud layer has been classified as aerosol by
the CALIPSO algorithm, as shown in Figure Sc. The
improvement of this layer classification by the CALIPSO
algorithm is mainly due to the introduction of the 3-D (3,
X/, z) approach. This is because, as will be discussed further
below, a better separation of cloud and aerosol clusters can
be achieved in this 3'-x’-z space, and the degree of separa-
tion of cloud and aerosol clusters is an essential limit on the
performance of any scene classification scheme. In addition,
the mean attenuated volume color ratio is less sensitive to
the attenuation of overlying clouds, because the cloud
scattering has weak wavelength dependence in the visible
and near-inferred region and, as a result, taking the ratio of
the two attenuated backscatter values can cancel the effect
of the attenuation of overlaying clouds. The large false rate
of this high-cloud layer with the GLAS algorithm might be
due in part to the (somewhat arbitrary) threshold value

7 of 13



D15202

being not exactly located at the desired balance point that
results in an equal false rate for cloud and aerosol. For
example, if the selected threshold is larger than the balance
value, optically thin clouds can be mistakenly classified as
aerosol.

[25] No misclassifications were made by the CALIPSO
algorithm in the uppermost cloud layer from 1945 to
1956 UTC. However, the misclassification rate for the two
high-cloud layers at 9—10 km on the right-hand side of
Figure 5 is quite high (26.5%), because these two layers are
optically very thin. Because the GLAS algorithm sets a
threshold at 8 km, above which all features are classified as
cloud, the GLAS algorithm scores a 100% success rate in
these layers. The CALIPSO algorithm includes a similar
cutoff threshold, but set at a much higher altitude. The current
implementation of the CALIPSO method has the potential to
discriminate aerosols up to a maximum altitude of 14 km.

[26] The CPL feature-finding algorithm had very limited
success in identifying the boundaries of the extremely faint
aerosol layer in the free troposphere below 5 km. However,
for those few identifications that were made, all features
were classified as aerosol by both the GLAS algorithm and
the CALIPSO algorithm.

[27] Because of the chaotic and occasionally ambiguous
nature of the backscatter data below 2 km (especially from
2000:29 UTC on through the end of the acquisition se-
quence), correct labeling of all of the features in this region
is a challenging task. As a consequence, making a quantitative
assessment and comparison of classification success rates for
the layers lying below 2 km is difficult. However, it still can be
seen that most PBL aerosols and cloud-like layers were
correctly discriminated by both the GLAS and CALIPSO
algorithms. Differences between the two classification results
are seen predominately at the edges ofthose cloud-like layers.
Of the features within this ambiguous group, more were
classified as aerosol by the GLAS algorithm than by the
CALIPSO algorithm. A success rate of ~98.5% has been
achieved by the CALIPSO algorithm for the features above
2 km in this case under study. The overall success rate for all
altitudes is estimated to be better than 94%.

[28] Figures 6a and 6b present PDFs of volume color ratio
and mean attenuated backscatter, respectively, derived by the
GLAS and CALIPSO algorithms from the entire 10-flight
data set for all altitudes. The PDFs derived by the two
algorithms are generally consistent. However, several nota-
ble differences exist. In Figure 6a, relatively large differences
are seen for volume color ratios larger than ~0.7. This is
mostly due to the misclassification of cloud by the GLAS
algorithm as demonstrated in Figure 5. This can be seen more
clearly in Figures 7a and 7b, in which PDFs of volume color
ratio and mean attenuated backscatter for 1—-2-km altitudes
are presented. A strong secondary mode appears at around
0.9 in the PDF of aerosol volume color ratio derived by
GLAS. This mode is very similar to the mode of the
corresponding cloud distribution, implying that contributions
to the aerosol PDF in this high-color-ratio region are actually
due to the misclassification of clouds as aerosols. This
observation is consistent with our case studies and the results
shown in Figure 5.

[29] The total feature occurrence number and the number
of features that have been classified as different types by the
GLAS and CALIPSO algorithm are plotted in Figure 8a as a
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Figure 7. Distributions of (a) volume color ratio and
(b) mean attenuated backscatter for 1-2-km altitudes.

function of feature center altitude. Two peaks in the differ-
ence curve are seen at 0—2-km and 5-8-km altitude
regions. Figure 8b presents the ratio of the number of
features classified as different types to the total feature
number and the ratio of the number of features that have
been classified as aerosol by GLAS and as cloud by
CALIPSO to the total feature number. Among the features
classified as different types, ~79% are those that have been
classified as aerosol by GLAS and as cloud by CALIPSO.
Most of these are clouds that have been classified as aerosol
by GLAS as demonstrated in Figure 5. Above 8 km we
ascribe the differences as being generally due to the incor-
rect classification of optically thin clouds as aerosols by the
CALIPSO algorithm and to false positives such as those
indicated in Figure 5b. Minor differences seen in Figure 6a
for smaller color ratios are largely due to these high
features. Here we note again that the prototype GLAS
algorithm classifies all features above 8 km as cloud,
resulting in a systematic misclassification of high-altitude
aerosols (though we note, too, that only a small amount of
aerosols were observed above 8 km by CPL during the
THORPEX campaign).

[30] The results presented thus far show that the ability to
discriminate between clouds and aerosols is improved by
the multitest algorithm devised for CALIPSO. As men-
tioned in section 2.3, in a higher-dimensional space the
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line).

different feature clusters separate more readily and distinc-
tively than in lower dimensional space. The CALIPSO
algorithm employs a 3-D approach (3'-X’-z space). On the
other hand, the GLAS discriminator is equivalent to a 2-D
approach consisting of p = Biax X |(AB/Az)|max and z. In
this study, a better separation of cloud and aerosol clusters is
achieved in the 3-D space. Figures 9a and 9b present
scatterplots of mean volume color ratio and mean 532-nm
attenuated backscatter, respectively, for the CALIPSO clas-
sified features. Clouds and aerosols are shown to separate
well in the volume color ratio plot above ~1.5 km.
Incorporating the volume color ratio into the classification
scheme clearly contributes to the improved discrimination
capability of the CALIPSO algorithm. However, some
overlap still exists below ~1.5 km. Not surprisingly, incor-
rect classifications produced by the CALIPSO algorithm
originate mostly in this altitude regime.

[31] We note that the cloud-aerosol classification with the
two-dimensional GLAS algorithm may be improved some-
what by optimizing the selection of threshold values.
However, the classification performance is limited intrinsi-
cally by the degree of the separation of cloud and aerosol
clusters in the p-z space.

[32] It is also seen that volume color ratio decreases with
altitude. As described in section 3.1, the volume color ratio
is the ratio of total signals including particulate and molec-
ular scattering. Its value varies between molecular color
ratio and particulate color ratio depending on scattering ratio
(the ratio of particulate backscattering coefficient to molec-
ular backscattering coefficient). The 1064-nm to 532-nm
molecular color ratio is 1/16 and is in general much smaller
than the particulate color ratio. When the scattering ratio is
very large, the volume color ratio is very close to the
particulate color ratio, and it is close to the molecular color

20
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Figure 9. Scatterplots of mean attenuated (a) volume color ratio and (b) backscatter of the CALIPSO-
algorithm-classified clouds and aerosols as a function of medium altitude of the feature layer for the CPL

THORPEX data set.
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Figure 10.

(a) Raw lidar signal at 532 nm, (b) attenuated scattering ratio at 532 nm, (c) 1064-nm to 532-nm

volume color ratio, (d) layer-averaged attenuated volume color ratio, and (e) feature layer mask with the
color indicating feature types classified by the CALIPSO cloud and aerosol classification algorithm.

ratio when the scattering ratio is very small. For higher
features the scattering ratio is generally smaller than that for
lower features, and the volume color ratio tends to be
smaller at higher altitudes.

4.2. Using LITE Desert Dust Data

[33] As predicted by theory (e.g., see Figure 3) and dem-
onstrated by observations [e.g., Vaughan, 2003; Sugimoto et
al., 2002], because of the larger particle sizes present, desert
dust usually has a higher particulate color ratio than other
aerosol types. The value of the color ratio for desert dust is
very close to that for clouds. This fact alone may cause
some additional difficulty in distinguishing dust aerosol
from clouds at or near desert regions. When combined with
the higher backscatter coefficients frequently found in
desert dusts (which, in turn, are due to the high probability
of large injections of mineral particles to the atmosphere in
the regions), the potential for ambiguity is magnified
further. A test of the CALIPSO algorithm specifically

targeting dust data observed over a desert region was
therefore highly desirable. LITE acquired observations on
numerous orbits passing over the Sahara desert [Winker et
al., 1996]. Because the LITE data provide lidar backscatter
profiles at three wavelengths (355 nm, 532 nm, and
1064 nm), it is well suited for testing the CALIPSO
cloud-aerosol discrimination scheme. Hence LITE desert
dust data were used to test the CALIPSO algorithm. Layer
boundaries in the LITE backscatter profiles were located
using a threshold-based feature finder [Vaughan et al.,
2002] applied to the 532-nm signal profiles. As in the tests
using CPL data, the mean attenuated backscatter at 532 nm
and the 1064-nm to 532-nm attenuated volume color ratio,
along with the altitude midpoint of the layer, are used as
input to the algorithm.

[34] Figure 10 presents an example of the LITE test data.
Figure 10a shows a segment of 532-nm raw backscatter
data acquired during orbit 83, as LITE passed over the
western portion of the Sahara desert. The 532-nm attenuated
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scattering ratio (that is, the ratio of the attenuated back-
scatter coefficients to a reference molecular profile) and the
volume attenuated color ratio (370e4(2)/3532(2) are plotted in
Figures 10b and 10c, respectively. A layer of Saharan dust
is seen from ~0305:30 mission elapsed time (MET) to the
end of this data segment.

[35] This dust layer is geometrically thick, extending
from the surface up to an altitude of 6 km at its thickest
point. The attenuated scattering ratio is generally larger than
2.2 and, as seen in Figure 10b, increases to approximately 5
in the densest regions. Note, however, that the true maxi-
mum value of the attenuated scattering ratio cannot be
ascertained because of signal saturation. As a consequence
of the high gain settings used during this phase of the LITE
mission, the 532-nm signal in this data segment saturates in
clouds and in dense acrosols. In Figure 10a the saturated
regions of the signal (e.g., the dense cloud at ~7 km,
extending from 0308:05 to 0309:42 MET) are indicated in
white. Mild signal saturation is seen in the denser parts of
the dust layer and the PBL aerosol layer, but deep saturation
is seen only in strong clouds. Though not presented here, no
saturation of the 1064-nm signal occurred in the dust layer.
As a result of this differential saturation, the color ratio was
overestimated significantly in dense clouds and to a lesser
degree in the denser parts of the dust and PBL aerosol
layers.

[36] The values of attenuated scattering ratio for the dust
layer are very similar to the range of 2—5 that was typically
observed by a ground lidar for relatively calm weather
conditions at Dunhuang (40°00'N, 94°30'W), an observa-
tion station that is very close to the Taklamakan Desert
[Iwasaka et al., 2003]. A range of peak scattering ratio of
1.4—5.2 was measured by a high-spectral-resolution-lidar
(HSRL) at Tsukuba in Japan for a number of heavy Asian
dust events during the springs of 1998 and 1999 [Liu et al.,
2002a]. The dust layers in these events are the result of
transport eastward from the Asian desert regions in China
and/or Mongolia following the very severe dust storms. The
range of layer-averaged scattering ratios for these Asian
dust events was from 1.3 to 3.4.

[37] The Saharan dust layer measured by LITE also has a
large color ratio. An analysis by Vaughan [2003] estimates
the particulate color ratio at ~0.86 for this layer. The mean
attenuated volume color ratio for each profile, which was
computed from the ratio of layer-averaged backscatters at
1064 nm and 532 nm, is presented in Figure 10d. Features’
upper and lower boundaries were determined by a feature-
finder algorithm [Vaughan et al., 2002]. It can be seen that
for the most part the volume color ratio is smaller than the
particulate color ratio (~0.86) because of the presence of
molecular scattering and (possibly) the spectral dependence
of the attenuation. Large values are seen mainly in the
denser parts of the dust layer. Large acrosol color ratios can
also be measured when there are dense clouds overlying the
dust layer. Because of attenuation from the clouds the return
signal from the dust layer underneath is weakened at both
1064 nm and 532 nm, and the signal-to-noise ratio is
likewise reduced substantially in both channels. In this
situation, large color ratio values can occur as a result of
noise excursions.

[38] The CALIPSO algorithm was applied to all features
detected in this data segment. Results are presented in
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Figure 10e. As with the results obtained using the CPL
data, the color used indicates the different feature types: Red
represents aerosol, and blue represents cloud. The additional
green color in Figure 10e denotes the surface. It is seen that
for the most part the dust layer has been classified as
aerosol. Approximately 8% of the dust layer has been
misclassified as cloud. Within this 8%, the layer mean
attenuated color ratio is typically in excess of ~0.7. The
results shown in Figure 10e clearly demonstrate that the
CALIPSO algorithm can effectively discriminate between
dust layers and clouds even in the demanding conditions
imposed by measurements acquired in desert regions. We
have also tested with other dust data sets acquired during
other CPL missions (e.g., Cirrus Regional Study of Tropical
Anvils and Cirrus Layers—Florida Area Cirrus Experiment
(CRYSTAL-FACE)). The dust layers contained in these
data sets are generally less robust than the one shown in
Figure 10. In these additional tests, better classification
between dust layers and clouds was achieved.

4.3. Future Refinements

[39] In strong storm disturbances, dust acrosols at or near
desert regions can have even larger backscatter coefficients
and higher volume color ratio (approaching the dust partic-
ulate value) than those tested in this study. A very heavy dust
event with a maximum extinction coefficient of ~4 km ' has
been recorded at a site (116.3°E, 39.9°N) in Beijing in 2002
by Sugimoto et al. [2003]. In such extreme conditions the
likelihood that the CALIPSO algorithm will mistakenly
classify a dust layer as a cloud is no doubt higher than would
be indicated by the figures and numbers presented thus far.

[40] Therefore, in order to further refine and improve our
ability to discriminate dust from clouds, we plan to conduct
further testing using measurements made in desert regions.
In addition, consideration will be given to extending the
dimensionality of the PDFs used by including several
supplementary optical and/or physical parameters. The
physical thickness of a layer is one such example. Optically
thick dust aerosol layers usually exist in the lower atmo-
sphere and have a vertical extent of several kilometers. On
the other hand, optically thick clouds in the lower atmo-
sphere generally exhibit a much smaller physical thickness.
Therefore, by including this additional dimension specify-
ing the physical thickness of a feature, a better separation
between the class of aerosols (including dust) and the class
of clouds might be achieved.

[41] Another test, one that checks whether a feature layer
is adjacent to the surface, can also be conducted to help
separate clouds and aerosols in the PBL. The PBL aerosol
layer is usually in contact with the surface, whereas cloud
layers, except for some hazes and/or fogs, are not. The
surface adjacency test might be implemented as follows. For
features in the lower atmosphere, if confidence level com-
puted using the multidimensional PDFs fails to exceed some
threshold, then the layer would be checked to see whether it
is adjacent to the surface. If the layer is found to be adjacent
to the surface, then the layer is classified as aerosol. If not,
then the initial (albeit low-confidence) classification made
by the PDF approach is retained. As seen in Figure 9, there
is more overlap between the cloud and aerosol clusters in
the PBL than at other altitudes. Similarly, misclassification
of the THORPEX-PTOST data by the CALIPSO algorithm
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occurs mainly in the PBL region. It would seem therefore
that additional testing of features found in this altitude
regime would be warranted.

[42] The volume depolarization ratio is a useful indi-
cator for identifying irregular particles [e.g., Sassen, 1991;
Murayama et al., 2001; Liu et al., 2002a], and it provides
the means to discriminate between ice clouds and water
clouds and between dust layers and spherical aerosols. This
parameter is also a candidate for inclusion in the parameter
space used for cloud-aerosol discrimination. At lower alti-
tudes the depolarization ratio should be especially helpful in
distinguishing dense desert dust aerosols from water clouds.
Nonspherical dust particles can produce high depolarization
ratios [Gobbi et al., 2000; Murayama et al., 2001], whereas
when multiple scattering can be neglected, the spherical
droplets in water clouds generally yield no depolarization.
However, we note here that for spaceborne lidars the
depolarization due to the multiple scattering in dense water
clouds could be an issue [Hu et al., 2001]: The high altitude
of the orbit (e.g., 705 km for the CALIPSO satellite) can
yield a large footprint on the ground even for a small
receiver field of view. Introducing a depolarization ratio
test into the CALIPSO algorithm would thus require the
development of PDFs for cloud and aerosol depolarization
ratios that correctly account for the effects of multiple
scattering. Unfortunately, as neither LITE nor GLAS was
configured as a polarization-sensitive instrument, no space-
based measurements of depolarization ratio are available for
testing such PDFs. Therefore it is currently difficult to make
reliable assessments regarding the utility of an additional
depolarization ratio test. However, revisiting the issue will
become possible once sufficient data have been collected by
the CALIPSO mission itself.

5. Conclusions

[43] Single-test and multiple-test approaches based on 1-D
or multiple-D PDFs for the two-class scene classification
problem have been studied and described in this paper. We
have shown that the multiple-test approach provides better
classification than a single-test approach. Theoretically, a
better classification can be achieved by adding more tests,
because the separation of different feature clusters, which is a
basic limitation of the classification, is more complete in
higher-dimensional space. A practical algorithm has been
developed for the CALIPSO lidar cloud-aerosol discrimina-
tion. The algorithm is a 3-D approach utilizing the layer mean
attenuated backscatter at 532 nm, the layer-integrated
1064-nm to 532-nm volume color ratio, and the midlayer
altitude.

[44] The algorithm has been tested with the data set of 49
hours acquired by CPL during the 2003 THORPEX-PTOST
campaign conducted in Honolulu, Hawaii, from 18 February
to 14 March 2003. All 228,264 features found in this data set
were used as input to the algorithm test. Feature classifica-
tions generated by the CALIPSO algorithm were compared
to those generated by the GLAS prototype algorithm and
included in the CPL data product. The majority of features
were classified identically by the two algorithms. However,
in ~5.7% of the cases the algorithms arrived at different
conclusions. Case studies revealed that these differences are
mostly due to the misclassification of cloud as aerosol by the
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GLAS algorithm. The introduction of volume color ratio as a
test criterion in the CALIPSO algorithm has significantly
improved the cloud-aerosol classification, because better
separation of cloud and aerosol clusters can be achieved.

[45] Because their scattering properties (especially color
ratio) are so similar to clouds, dust aerosols are judged to
present the highest potential for misclassification by the
CALIPSO algorithm. For this reason, additional tests of the
CALIPSO algorithm were conducted using LITE dust data
acquired over the Sahara desert. For those dust events
observed far from the desert region, features are correctly
identified as being either cloud or (dust) aerosol. For the
dust event measured during LITE orbit 83, dust identifica-
tion was in general quite successful. However, several
instances in which the layer-integrated attenuated color ratio
was larger than ~0.7 were incorrectly classified as cloud. In
these cases, the large color ratio values were either caused
by noise or due to the contamination of the dust layer by
embedded or vertically adjacent clouds. Saturation in the
return signals also resulted in occasional overestimation of
the color ratio in the dust layer. Additional tests on layer
thickness and/or on whether the layer is in contact with the
surface are proposed as future improvements to help to
discriminate aerosols in the PBL. Another proposed mod-
ification is the inclusion of volume depolarization ratio in
the parameter space used for cloud-aerosol discriminations.
The algorithm is being implemented for the launch of
CALIPSO in early 2005.
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